首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   52篇
  国内免费   41篇
化学   486篇
晶体学   14篇
力学   2篇
综合类   2篇
物理学   39篇
  2023年   2篇
  2022年   10篇
  2021年   14篇
  2020年   16篇
  2019年   17篇
  2018年   13篇
  2017年   13篇
  2016年   20篇
  2015年   18篇
  2014年   18篇
  2013年   46篇
  2012年   26篇
  2011年   25篇
  2010年   15篇
  2009年   27篇
  2008年   19篇
  2007年   20篇
  2006年   24篇
  2005年   23篇
  2004年   20篇
  2003年   24篇
  2002年   18篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   10篇
  1997年   15篇
  1996年   11篇
  1995年   13篇
  1994年   9篇
  1993年   5篇
  1992年   12篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有543条查询结果,搜索用时 15 毫秒
1.
《Mendeleev Communications》2022,32(5):597-600
Calorimetric monitoring of the autoclave reaction N2O4 + C2H4 at –85 to +10 °C under argon pressure 10–30 bar revealed that the exothermic chemical reaction started at temperatures above –52 °C at 10 bar, whereas an intensive exothermic reaction started at –85 °C and pressure of 30 bar. IR study showed that oligo/polynitroethylene was formed at 30 bar, while carbonyl and hydroxy compound as well as nitrate R–ONO2 formation occurred upon processing at 10 bar.  相似文献   
2.
This work describes the synthesis and full characterization of elusive chloropnictenium ion salts of the type [RAr*N(SiMe)ECl][A] (RAr*=2,6‐(CHPh2)‐4‐R‐C6H2, R=Me, tBu; E=Sb, Bi; A?=GaCl4, Al(OCH(CF3)2)4). In these species the cation is significantly stabilized by weak arene interactions to flanking phenyl groups of the RAr* moiety. In this context the bonding situation has been studied by computational means and the reactivity towards the Lewis base 4‐dimethylaminopyridine (dmap) was investigated.  相似文献   
3.
Reaction of the zero‐valent platinum complex [Pt(PCy3)2] with SbF3 generates the cationic diplatinum stibenium complex [{(Cy3P)2Pt}2(μ‐SbF2)]+, the first unsupported metal‐only Lewis pair containing an antimony‐centered Lewis acid. In contrast, SbCl3 undergoes oxidative addition to [Pt(PCy3)2], resulting in the dihalostibanyl complex trans‐[PtCl(SbCl2)(PCy3)2], the first example of oxidative addition of an antimony–halide bond to a transition metal.  相似文献   
4.
The reaction of N,C,N-chelated stibinidene ArSb ( 1 ) (Ar=C6H3-2,6-(CH=NtBu)2) with selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) gave the addition products with bridged bicyclic [2.2.1] structure containing an antimony atom at the bridgehead position, fused with a 6-membered benzene and a 5-membered N-alkyl/aryl-pyrrolidine ring. These compounds were completely characterized. More importantly, additional studies showed that these reactions are reversible in solution, thereby representing an unprecedented reversible activation of a C=C bond by an antimony(I) compound.  相似文献   
5.
Electrocatalytic hydrogen gas production is considered a potential pathway towards carbon-neutral energy sources. However, the development of this technology is hindered by the lack of efficient, cost-effective, and environmentally benign catalysts. In this study, a main-group-element-based electrocatalyst, SbSalen , is reported to catalyze the hydrogen evolution reaction (HER) in an aqueous medium. The heterogenized molecular system achieved a Faradaic efficiency of 100 % at −1.4 V vs. NHE with a maximum current density of −30.7 mA/cm2. X-ray photoelectron spectroscopy of the catalyst-bound working electrode before and after electrolysis confirmed the molecular stability during catalysis. The turnover frequency was calculated as 43.4 s−1 using redox-peak integration. The kinetic and mechanistic aspects of the electrocatalytic reaction were further examined by computational methods. This study provides mechanistic insights into main-group-element electrocatalysts for heterogeneous small-molecule conversion.  相似文献   
6.
A new series of triphenylantimony(V) 3-alkylthio/arylthio-substituted 4,6-di-tert-butylcatecholates of the type (3-RS-4,6-DBCat)SbPh3, where R = n-butyl (1), n-hexyl (2), n-octyl (3), cyclopentyl (4), cyclohexyl (5), benzyl (6), phenyl (7), and naphthyl-2 (8), were synthesized from the corresponding catechol thioethers and Ph3SbBr2 in the presence of a base. The crystal structures of 1, 2, 3, and 5 were determined by single-crystal X-ray analysis. The coordination polyhedron of 1–3 is better described as a tetragonal pyramid with a different degree of distortion, while that for 5- was a distorted trigonal bipyramid (τ = 0.014, 0.177, 0.26, 0.56, respectively). Complexes demonstrated different crystal packing of molecules. The electrochemical oxidation of the complexes involved the catecholate group as well as the thioether linker. The introduction of a thioether fragment into the aromatic ring of catechol ligand led to a shift in the potential of the “catechol/o-semiquinone” redox transition to the anodic region, which indicated the electron-withdrawing nature of the RS group. The radical scavenging activity of the complexes was determined in the reaction with DPPH radical.  相似文献   
7.
The reaction of the intramolecular germylene-phosphine Lewis pair (o-PPh2)C6H4GeAr* ( 1 ) with Group 15 element trichlorides ECl3 (E=P, As, Sb) was investigated. After oxidative addition, the resulting compounds (o-PPh2)C6H4(Ar*)Ge(Cl)ECl2 ( 2 : E=P, 3 : E=As, 4 : E=Sb) were reduced by using sodium metal or LiHBEt3. The molecular structures of the phosphine-stabilized phosphinidene (o-PPh2)C6H4(Ar*)Ge(Cl)P ( 5 ), arsinidene (o-PPh2)C6H4(Ar*)Ge(Cl)As ( 6 ) and stibinidene (o-PPh2)C6H4(Ar*)Ge(Cl)Sb ( 7 ) are presented; they feature a two-coordinate low-valent Group 15 element. After chloride abstraction, a cyclic germaphosphene [(o-PPh2)C6H4(Ar*)GeP] [B(C6H3(CF3)2)4] ( 8 ) was isolated. The 31P NMR data of the germaphosphene were compared with literature examples and analyzed by quantum chemical calculations. The phosphinidene was treated with [iBu2AlH]2, and the product of an Al−H addition to the low-valent phosphorus atom (o-PPh2)C6H4(Ar*)Ge(H)P(H)Al(C4H9)2 ( 9 ) was characterized.  相似文献   
8.
9.
We report an efficient approach to the synthesis of AgSbS2 nanocrystals (NCs) by colloidal chemistry. The size of the AgSbS2 NCs can be tuned from 5.3 to 58.3 nm with narrow size distributions by selection of appropriate precursors and fine control of the experimental conditions. Over 15 g of high‐quality AgSbS2 NCs can be obtained from one single reaction, indicative of the up‐scalability of the present synthesis. The resulting NCs display strong absorptions in the visible‐to‐NIR range and exceptional air stability. The photoelectrochemical measurements indicate that, although the pristine AgSbS2 NC electrodes generate a cathodic photocurrent with a relatively small photocurrent density and poor stability, both of them can be significantly improved subject to CdS surface modification, showing promise in solar energy conversion applications.  相似文献   
10.
Li17Sb13S28 was synthesized by solid‐state reaction of stoichiometric amounts of anhydrous Li2S and Sb2S3. The crystal structure of Li17Sb13S28 was determined from dark‐red single crystals at room temperature. The title compound crystallizes in the monoclinic space group C2/m (no. 12) with a=12.765(2) Å, b=11.6195(8) Å, c=9.2564(9) Å, β=119.665(6)°, V=1193.0(2) Å3, and Z=4 (data at 20 °C, lattice constants from powder diffraction). The crystal structure contains one cation site with a mixed occupation by Li and Sb, and one with an antimony split position. Antimony and sulfur form slightly distorted tetragonal bipyramidal [SbS5E] units (E=free electron pair). Six of these units are arranged around a vacancy in the anion substructure. The lone electron pairs E of the antimony(III) cations are arranged around these vacancies. Thus, a variant of the rock salt structure type with ordered vacancies in the anionic substructure results. Impedance spectroscopic measurements of Li17Sb13S28 show a specific conductivity of 2.9×10?9 Ω?1 cm?1 at 323 K and of 7.9×10?6 Ω?1 cm?1 at 563 K, the corresponding activation energy is EA=0.4 eV below 403 K and EA=0.6 eV above. Raman spectra are dominated by the Sb?S stretching modes of the [SbS5] units at 315 and 341 cm?1 at room temperature. Differential thermal analysis (DTA) measurements of Li17Sb13S28 indicate peritectic melting at 854 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号